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COMPARATIVE ANALYSIS OF VARIOUS METHODS OF EVALUATING
THE PARAMETERS IN THE PROBLEM OF V.G. KURT

L.S. Gurin, N.P. Ivanova, V.S. Mokrov and K.A. Tsoy

Section 1. Formulation of Problem /3*

Fluxes~(of pulses, particles) with different intensities are

observed. Each flux is isolated by an appropriate filter. With-

out loss of generality we will assume that the number of filters

is four. It is assumed that the fluxes represent Poisson pro-

cesses (in particular, the simplest:'Poisson processes) with

parameters X1 ,...,X4, which must be estimated. The filters are

connected sequentially for equal time intervals to (to = 12 sec).

The number of points (pulses, particles) is counted by one

counter-adder, which accumulates the pulses from each connected

filter and transmits the instants at which the number of points

is a multiple of some number n (in practice, n = 8; below, we will

consider only this case). The time interval 4to in which all

filters were connected will be called a cycle. Thus, the result

of the measurements represents a sequence of time instants

tj (j = 1,...,N) in the interval T consisting of a specific number

of cycles T = 4mt.

The following problems must be solved:

a. The unknown parameters Xi (i = 1,2,3,4) must be

estimated.

b. The parameters must be determined as a function of

time, provided such a functional relationship exists.

* Numbers in the margin indicate pagination in the foreign text.



c. The hypothesis that the fluxes represent a Poisson

process must be tested.

All problems are interrelated. For example, to solve prob-

lem b, problem a must be solved using the minimum number of cycles

(if possible, one cycle). Henceforth, mo will denote the number /

of cycles on the basis of which one set of parameters is determined

and the corresponding time (base time) will be denoted by To .

This article compares several methods for the estimation of

the parameters (and thus also the solution of the first and,

partially, the second formulated problems). The comparison is

based both on theoretical concepts and also on the results ob-

tained from applying these methods to trial fluxes obtained using

Monte Carlo methods. Since for the trial fluxes the parameters

are specified in advance, foroa, sufficiently large number of

realizations we obtain the variances of the estimators given by

the different methods. The analysis presented in the article can

be used to select the most suitable method for the treatment of the

results of actual physical measurements.

Section 2. The Case of Sufficiently Dense Fluxes

For sufficiently dense fluxes, two or more time instantas

will lie in some intervals to . In this case, the Xi can be esti-

mated as follows::

When the instants

tlt2,...,tki (ki  > 2)

lie in the interval to,

" 8( -t (2.1)
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When this holds for every, i in one cycle 4to, this cycle

will be the base time. Otherwise, the base time To = 4mto can

be selected so that this event will occur at least once for every

Xi.

Therefore, it is useful to change the form of formula (2.1).

Henceforth, ki - 1 will denote the total number of "steps," i.e. /5

time intervals Ativ between two successive time instants, in-

cluded in the time interval to during which the i-th filter is

active, counted in the base interval To . Then formula (2.1) can

be rewritten in the form

8(K-i)
C~ Atf (2.2)

Here vandi*throughout thenarticle), the subscript i denotes

the number of the flux.

Let us estimate the accuracy of this method, which we will

henceforth call the first approximation method.

It is known that the time between two successive points in a

flux representing a Poisson process with parameter Xi (henceforth

we will assume that Xi does not change in the base interval To)

has an exponential distribution with expected value i/Xi and

variance 1/X?. Since the individual time intervals are statis-

tically independent, for ,ithe sum of the intervals we have

si = 8(ki - 1), which we denote by (i (to emphasize that it is

a random variable).

AD A T I ( 2 .3 )

1[Throughout the article, M denotes expected value (E) and D denotes
variance (Var).]
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According to A.M. Lyapunov's central limit theorem, for

sufficiently large si, si will be a normally distributed random

variable. Therefore, we have (with probability 0.95) the approxi-

mate inequality

or, after substitution and rearrangement,

Z , (2,4)

Denoting as usual the estimator of Xi by Xi, we obtain from /6

(2.4) for the relative error with probability 0.95

(2.5)

Thus, for a 10% error we must take ki = 49. We note that.'for

this valueof ki, it is legitimate to apply the A.M. Lyapunov theorem

(central limit theorem).'

Let us define the concept of a "sufficiently dense" flux more

accurately. Suppose the base includes mo cycles. Then the

total operating time of the i-th filter is moto . When we have

ki - 1 '!steps," the ratio

,ot,, (2.6)

characterizes the density of the flux Xi ,relative to the character-

istic time to . Clearly 0 < i < 1 and Xi + m as Pi + 1. Henceforth

4I



we will call Xi the density coefficient. For M~i > 0.5, we can

consider the flux to be sufficiently dense (since Xi is a random

variable, and theoretically it is more convenient to consider its

expected value MRi).

Determination of Time Varying Flux, Suppose we have

(2.7)

Let us consider two neighboring base intervals. The distance

between their centers is To . To derive the relation (2.7),

To must be sufficiently small, so that thefunction (2.7) is linear

on the interval To (otherwise the estimators presented above will

be biased). Then approximately

At) -- 6t t (t) (2.8)

On the other hand, we have seen that for the given To the /7

error with which Xi(t) is determined can be, with probability

0.95,

1.96//8(ki - 1).

Using the density coefficient ki, the last expression can

be written in the form

'1,96 1,96 1,96 ,g6 3,9k

(2.9)

Comparing (2.8) and (2.9), we obtain the inequality

5



or, after squaring both sides, multiplying by XiT and rounding

to 3.92 - 4,

rT 16
A-t) > - (2.10)

It can be seen from formula (3.30) that for large z = Xto,

(2.10) can be transformed as follows

or 4 t (~)~> 1 6t

i.e.

(2.11)

Thus, for Xto = 29 and AX/X= 0.1, m > 20 cycles are required.

Hence, the determinationof.time varying fluxes is a difficult

problem. To improve its solution we must selectobetter methods

for estimating the density which will be discussed below.

Method of Successive Approximations

One-can attempt to improve the accuracy of the estimates

obtained above by considering them as first approximationnesti-

mates, denoted respectively by Ai. For each interval At /8

between two neighboring instants including two or more intervals

toi, we write

at - ot,*tat atj (2.11) [sic]
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where Ati is the part of At referring to toi (i.e. the active

range of the i-th filter). Next, we partition

x? ".r ~(2.12)

and form the next approximation

S , . .(2.13)

, .i'The accuracy can be further improved by replacing in (2!12)

1) by X12) etc. The accuracy of this method can be estimated

from trial fluxes.

Section 3. General Discussion of the Problem

Suppose that the counter begins to operate at the time t = 0.

In the general case, it records some ti e varying,Poisson flux

of pulses characterized by a piecewise continuous density function

X(t), with X(t) = Xi(t) for the i-th connected filter. When each

flux is simple, X(t) will be a step function with period 4to .

Below, we will use the notation

zt) = J(t)dt. (3.1)

In particular, in the case of simplest fluxes, at the left

endpoint of the interval toi preceded by m full cycles,

r,, t j=1m ,t to (3.2)

In the general case [1], the probability that exactly k pulses /9

will appear in time t is

7



P.. e r j (3.3)

Let us denote by pT (P = 0,1,..i.,7) the probability of the

event that the number of pulses can be represented in the form

K - sdql (3.4)

Then we have the following formula:

-r = e-z(o [zo)J (3.5)
d-o (,d,' ) "

Below, we omit the argument t in z, and, .conversely, consider

p1 as a function of z, i.e. p,(z). z is assumed to be a complex

variable. Then, the functions e Zp(z) = u,(z) have the following

properties:

SU,.,); (3.6)

d u,(o) i for K- ,;

S for o,...,- ,... (3.7)

From equations (3.6) with initial conditions (3.7) we obtain

explicit expressions for the u (z)

'_l. 8-- . - le ",+ (3.9)

Some properties of the functions u (z) are discussed in [2,3].

We will prove the following lemma.

Lemma I. Let z be real and z - . Then

S(3.10)
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Proof, C3.9) implies /10

(3.11)
-7 ' , e(C.

which proves the lemma.,

Using estimator (4.1), we obtain, for example, the result

that the equality.p,(z) = 1/8 is valid starting with z = 23 with a

relative error smaller than 1%. It can be seen from Table I that

the relative error does not exceed 1% for all practical purposes

already at z = 18. Thus (4.1) is a sufficiently good estimator.

We note that lemma 1 can also be derived from the general

results for Markov processes; however, the estimator for the

accuracy is not as good as (4.1).

Let us return to formula (3.2). We have

P -P4" .u). / (3.12)

We will consider the interval toi.

The probability that exactly k instants will lie in the inter-

val toi can be expressed as follows:

for k = 0 tP - t

(3.13)

for k > 0 PtP- .C (t'o ,.o [R(-1, - , -!



TABLE 1, p(z) /11

0 I 2 3 4 5 6 7
O, 0.90484 0.09048 0.00452 .0.00015 0 0 0 0
0.2 0.81873 0.16375 0.01637 0,00109 0,00005 0 0 0
0,3 0;74002 0.22225 0.03334 0,00333 0,00025 0.00002 0 0

0.4 0.67032 0,26813 0,05363 0.^0715 0.00072 0,00006 0 0
0.5 0.60653 0.30327? 0,07582 0.01264 0.00158 0.00016 0.00001 0
0.6 0.54881 0.32929 0.09879 0.01976 0.00296 0.00C36 0.00004 0
0.7 0.49659 0,34761 0.12166 0.02839 0.00497 0.00070 0,00008 0.00001
0.8 0.44933 0.35946 0,14379 0.03834 0,00767 0.00123 0.00016 0.00002
0.9 0,40657 0.36591 0.16466 0.04940 0.01111 0.00200 0.6J030 0.00004
1.0 0.36789 0.36788 0.18394 0.06131 0.01533 0.00307 0.00051 0.00007
1,2 0.30123 0.36144 0.21686 0.08674 0.02602 0.00625 0.00125 0,00021
1.4 0.24669 0,34525 0.24167 0,11278 0.03947 0.01105 C.00258 0,00052
I, 0,20211 0,32307 0.25:43 0.13783 0.05513 0.01764 0.00470 0,00108
1,8 0.1657. 0.29763 0.26780 0.16067 0.07230 0.02603 0.0078I 0.00201
2.0 0,13619 0,27086 0.27071 0.18045 0,09"'2 0,036P9 0.01203 0.00344
3.0 0.05789 0.15206 0,22485 0.22426 0.14809 0.10083 0.05041 0,02160
4,0 0.04809 0.08649 0,15182 0.19729 0,19601 0,15649 0,10425 0.05956
5.0 0.07207 0.06997 0,10236 0,1'.362 0.17890 0.17679 0,14669 0,10460
;.0 0.10607 0,08383 0,08596 0,-1178 0,14512 0,16532 0,16285 0,13857
7.0 0.13274 0.10838 0,09356 0,09739 0,11761 0,1!4192 0,15610 0,15231
8,C 0.14444 0,12889 0,11094 0.10121 0,10554 0,12128 0,13908 0,14862
9.0 0J14282 0.1--66 0,12647 0,11339 0.10712 0,11131 0,12358 0,13659
10.0 0.13442 0.13836 0,13. 8 0.12504 0,II556 0,11163 0,11554 0.12497
11,0 0,12576 0.15256 0.13494 0,I13150 0,I24 0,11743 0.115:6 0,11851
12.0 0.12061 0,12614 0,13100 0.13235 0,12939 0,12386 0.11899 0,11765
13,0 0;1196 0.12208 0,12628 0.12972 0.I3O90 0,12792 0,12372 0.12028
14.0 0.12132 0.12106 0,I23II 0,12627 0,12868 0,12894 0,12689 0,12373
-5.0 0.1238' 0,12215 0,12214 0,12381 0,12617 0,12785 0.12786 0,12619
16,0 0.i2572 0,1396 0.12281 0 12294 0,12428 0,12604 0.12719 r,12706
', 0,12647 0.12541 0.I24II 0.12333 0,12353 0,12459 10,12589 10.12667

18,0 0.2627 0.12604 0,12521 0.12425 0,12373 0,I2396 0.I2479 0.12575
19,0 0,12562 0,12595 0,12573 0.12508 0,12438 0,12405 0,12427 0.12492 /13
20,0 02500 0.12550 0.12571 0,I255I 0,12500 0,12450 0,12429 0,12449
30,0 0,12497 0,I2500 0.12503 0 12504 0,I25n3 O,12500 0.12497j 0,12496
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These formulas are exact when we use the expressions for /14

p derived above, and in the case of time varying fluxes replace

Aito by

Using (3.13), we can write down an exact formula for the

expected number Mk of instant k in the interval to*

K K(.14).

We introduce the notation

m ' o c ( ," (3.15)

Theidentity

r i p ( Z ,. ( 3 . 1 6 )

is easily verified;

For . = 0, in this identity we replace V - 1 by 7. Using

(3.16) and Table 1, we can calculate m (z) for a set of values

of z.

For I = 8 + v (v = 0,1,...,7), we obtain

K () ) (317)

11



Now, formula (3.14) can be written in the following form:

MK=ZP/ i +3 [n 4-(L.)Pi,-,(Ahto)1 *\ (3.18)

When i = 0, the formula does not include the first sum in the

braces.

Mk can always be calculated from formula (3.18) involving

a finite number of terms. The expression p. outside the braces /16

depends on the argument in (3.2).

Under.the conditions ofc, lemma I, i.e., when we can set

pp = 1/8, the following holds

Lemma 2.

Sm-, M~

(3.19)

Proof. For-!compactness, we write Xit o = z.

lL 2 -m ~I [+I') ((3.20)

Let us find the expression for A, in (3.20). Let X = 8k + Xl:

12



where V1 (1 ) and 2(p) are the number of terms in the inner sums

satisfying the conditions at 0 , j and Xl. For example, we have

V1(0) = 0 (first sum vanishes), V2 (o) = 1 for any X1 (then,;we

take j = Xl, which is always possible since 0 < XI < 7). For

1 > 0, ~I(p) = 1 when we can take j = X1 + P - 8, obtaining

0 < j < v - 1, i.e. when p > 8 - XI. This implies EV(p) = Xl.

Next P2 () = 1 if j = P+ X1 < 7 exists, i.e. P < 7 - Xl. Hence

EP2(b) = 8 - Xl. Thus, for X > 1,

(K ))C, t (9_Q S -+ XI

and for X = 0, i.e. X1 = 0 and k = 0, AX = 0. /17

Now (3.20) gives

which proves the statement of the lemma.

Similarly, as in the derivation of lemma 2 , we obtain for the

variance Dk as p +- 1/8 the-expression

.- o -- (3.21)

which can be expressed in a different form.

We introduce the notation

S ( - ,...(3.22)

Similarly as in (3.16) we obtain

M 1 o5-.() +0- ) () (F (3.23)

13



Now we can write Dk + (Mk)2 in the form:

(3 .24)

[ C Elp. (a) pF.,(C)+ v( ) v/pA(].

We note that for v < 2, PV-2 must be replaced by Pv+ 6 . Taking

into consideration that Mk = z/8 and i" pv ( z) = 1, we finally

obtain

Lemma 3

1-Di -gq I~Xt +vt 0o:,' t=it.o .(3.25)

For small z, ,the value of Dk can be calculated with the

aid of Table 1. For z < 20, the values of 6 4Dk are given in

Table 2. For z > 20, we can use with sufficient accuracy

pV(z) = 1/8. We then have /18

S= (t .10 ,5) (3.26)

Finally, let us estimate the density coefficient £i which was.

mentioned above. We drop the subscript i. Then we have the

following, exact formula

(3.27)

where e- = " t.-t-x .
ycx) Z C'-

P"o 13!

The interpretation of the formula is the successive summing

(integration) of arbitrary. values X with the conditions:

14



TABLE 2

me 64Z, -, -" -
0 0 22 0.59095

I 0.00000 6,997 24 0.62501
2 0,00003 11.617 26 0.65385

3 0.00050 15.084 28 0.67857
4 0,00307 16,538 30 0.70000
5 0,01080 16,954 40 0,77500
6 0,02688 17,025 50 0.82000
7 0,05297 17.291 60 0.85000
8 0,08865 17.969 70 0.87143
9 0.13176 19.UI3 80 0.88750
IO 0,12932 20.243 90 0.90LO0
II 0,22843 21.479 I00 0,91J00
I2 0,27677 22,620
13 0,32273 23 648
14 0,36542 24,600

15 0,40447 25.532
16 0,43987 26,480

17 0,47182 27,660
18 0.50,3 28.465
I9 0.52664 29.483

20 0.55016 30,500

a) 7 - a points of the flux precede the first instant

in the interval to (the probability of this event is p.).

b) The first instant coincides with the instant t.

c) The sum,of the lengths of the "steps" is x.

d) The number of instants is k + 1 (k "steps").

e) There are B remaining points in the interval to
after the "steps,"

15



The integral in the square brackets is transformed to the

form

•- I JC

Substituting in (3.27) and integrating, we obtain

MeK ( ", T. 9< (3.28)

We let Xto = z, assume p, 1/8 and write /19

for the Poisson distribution. Then, transforming the series (3.28)

analogously as in the derivation of lemma 2, we obtain

Lemma 4

&* I m (3.29)

Table 2 gives the values of the right member in (3.29) for

some z. It can be seen from Table 2 that starting with z = 15,

M -.-. ( (3.30)

with an accuracy up to 1%.

16



Section 4. Second Approximation Method

We will consider the base interval To = 4mot o . When the left

endpoint of this interval is sufficiently far from the point at

which the,:counter begins to work, the expected number of in-

stants included in the intervals in which the i-th filter operates

is, according to lemma 2,

SXimoto.

Suppose that the actual number of instants is ni . Then

m,) t 8(4.1)

can be taken as the first approximation. The accuracy can be

further improved along the lines described in Section 2. This

method of successive approximations can also be applied

to low density fluxes. The accuracy of the method can be

estimated on the basis of experimental trial problems.

For sufficiently dense fluxes, when both first approximation

methods can be applied, their accuracy can be compared theo-

retically. In fact, taking into account (3.26), the variance

for (4.1) is

64 /20
(.- T(4.2)

Transforming (2.4), we have for the first method

(ziffA (4.3)

Expression (4.3) is not convenient for a comparison, since:it

17



involves only random variables. However, passing to expected

values, we can write

i.e.

.. . (4.4)

Using formula (3.29) for Mk, we obtain

mD = r,.,[ _ \II )- , 4 e " ] (4.5)

Two conclusions follow from the above. First, for small z,

D1 increases enormously, which was to be expected. In fact,

expanding Mk in a series in powers of z we obtain

(4.6)

i.e.

(4.7)

as z - 0.

For a sufficiently high density, we can use formula (3.30)

for which we obtain

0 ,- )(4.8)

The comparison with (4.2) gives

18



-D, /21
D, ] 'I2__Z

i.e., D2 /D 1I  1 as z - m. (5.0)

Thus, for high densities, the first method may be more

efficient, since

which is greater than 1 starting with z = 63. However, this

advantage is very small and it approaches zero as z approaches

infinity. D2 /Dl attains its largest value, 1.006, at z = 126.

We note that using formulai (4.5) for D1 and formula (3.25)

for D2 (instead of (3.26)), we can -calculate more accurately the

values of D2 /D 1 for a set of values of z on the basis of

Tables 1 and 2.

The corresponding values are,-given in Table 3.

Section 5. Method of Least Squares

The method of least squares enables us to treat the base

interval without using lemmas 1 and 2. The successive intervals

between the instants included in the base interval whose length

is lmot o are taken as the base. Suppose that altogether [?]
instants are included in the interval, i.e. [?] intervals.

Let j denote the number of the interval. For a fixed j-th inter-

val, each i-th filter operates on it during nji (nji = 0,1,...)

time intervals Ativj Cv = l,,..,nji ) . Thus, the expected number

of pulses in the j-th interval is

S4 ' 5.1) Lsi]19

19



TABLE 3 /22

4 0. 013

5 0.037

6 0.076

7 0.131

8 0, 1.9

9 0.278

I0 0, 363

II 3,446

12 0. 522

13 0.587

14 0. 642

15 0.688

16 - 0.728

17 0.768

18 0.791

19 0,817

20 0,839

30 0,945

where the inner sum is zero when nji = 0. We note that the vari- /23

ance of the number of pulses mentioned is also given by

expression (5.1), i.e.:

Dej -1 .t (5.2)

Since in fact j = 8, formally applying the method of least

squares, we obtain

20
0J. D P.

20



for estimating the A =\(Ai,...,A4). The resulting problem is

nonlinear. However, taking into account (5.2) and the fact that

Mj = Rj = 8, we note that the variances Dkj are approximately

equal. Hence, they can be omitted and the problem takes on the

form:

zf I., V (5.4)

From the above, we obtain in the usual manner for the

the system of equations

oA Ai. (K , I.. (5.5)

where

rJ f 1 -t~> (5.6)
j • Y I y

We note that when this method is used, any interval, which

is arbitrarily close to the point at which the counter begins

to operate can be used as the base interval. However, it is

assumed that the fluxes are simple in the 'base

interval.

It can be seen from the results obtained on the basis of the

method of least squares presented below in Section 6 that this

method gives estimators with satisfactory variances but with

considerable bias. To clarify the reason for this phenomenon, we

will consider the estimation of the parameter X of a single flux.

Instead of (5.4), we obtain

21



/21' (57) /2

i.e. for the estimator X we have

d8±pjL 8 / ~ (5.8)

As N + m the numerator and denominator converge in the probability

sense to the corresponding expected values and we obtain

=., X (5.9)

i.e., in the limit the bias in the estimate is half the estimated

parameter. It can be seen from the table that the bias increases

as N increases.

However, if we use

S(5.10)

for the estimation instead of (5.7), we obtain

N=. " (5.11)

i.e., an unbiased estimator. This leads to the idea of improving

the accuracy of the least squares methodby summing in (5.4)

terms withLthe same structure. Let us consider the j-th inter-

val ATj. It is broken up into intervals with different filter

numbers i as follows:

22(512)
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We note that all terms in the sum (5.12). are equal to to except

the first and last term. We will assume that the structure of

ATj is determined by a pair of numbers s = (ip,n. ,), where nj

is the total number of terms in the partition (5.12). /25

Let Ns denote the total number of intervals ATj with struc-

ture s, and Qs the set j corresponding to the given s. Then

(5.13)

Now, instead of (5.3), we introduce the following sum of squares

N, k '" ±''- .' V-(5.14)

The factors 1/Ns in front of the brackets were introduced to take

into account the variances.

Because of the considerable difficulties connected with the

minimization of (5.14), the problem can be solved approximately by

summing only over certain structures s. The case when the sum

includes only structures of the form s = (i,l) will be called

the first approximation. It can be easily verified that this

approximation coincides with the first approximation method

described above. In the second approximation, structures of the

from s = (i,2) are also included in the sum.. For this case,

(5.14) reduces to the form

. 1 °., V. - . ',o (5.15)

(for i = 4 we take i + 1 =1)

23



In formula (5,15), one prime in the At indicates that the

interval At lies at the left endpoint of the corresponding inter-

val to,and two primes indicate that it lies at the right endpoint.

The following notation is convenient:

/26

. "(5.16)

In more general form sij will denote the sum. of the Ativ. over all

intervals toi in the base and their subintervals At in the inter-

vals between neighboring instants, with one endpoint in toi and

the other endpoint in toj. Then formula (5.15) can be rewritten

as follows:

4 ~) ((5.17)

We again obtain the system of equations (5.5) for the Xi, but

instead of (5.6), the expressions for the coefficients are:

A,,1 ~. •(s, s.-., Sr.I )

S(5.18)

For the more general case, the formulas become more cumber-

some. The terms

S -r " ..... (5.19)

must be added inside the braces in (5.17). In the above

si+ 1 = Nisto, etc. Here, difficulties arise even in writing down
the formulas, since for i > 4, it is replaced by the residual
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modulo fouv., Thus,for example, the expression si+2, i in (5.19)

becomes s5 ,3 = Sl,3 for i =3, and it is not clear whether the

left or right endpoints of the intervals toi are meant. There-

fore, primes must be used as in formula (5.15). We note that

such an ambiguity does not arise in (5.17), since, for example,

for i = 4

Si+l,i = s5,4 = s1,4

This can have only one meaning, namely, the right endpoint lies /27

at tol and the left endpoint at to4, since, if the converse were

true, we would obtain s = (i,4) instead of the structure s = (i,2).

The results obtained from solving the problem in the second

approximation by the method of least squares are presented in

Section 6.

Section 6. Modeling of Trial Fluxes and Calculat'ion of Statistical
Characteristics of Different Methods

Each flux is modeled as follows: From time t = 0, the

intervals between the pulses (which have an exponential distri-

bution with parameter Xi) are laid off on the axis, i.e. uniform-

ly distributed random numbers Ek on the interval (0,1) are selected

and

(6.1)

is used. When::a model ofatime varying flux is required

A , z , M , ( 6 .2 )

the value corresponding to
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- tj (6.3)

is substituted in (6.1) for i.

Next, the time axis is partitioned into subintervals of

length to, in which the instants are entered as follows: When

8k + v1 points lie in the first interval, the points whose

numbers are multiples of eight are taken as the instants and the

number vl is stored in memory. Next, we consider the second

interval of length to . If it includes 8k2 + v2 points from

the second flux, for 8k2 + v2 > 8 - vl , the point with the number

8 - v1 is taken as the instant, etc. When 8k2 + v2 < 8 - v1 (i.e.

k2 = 0, v1 + V2 < 8), no instant lies in the interval under

consideration and the number v1 + v2 is stored in memory, etc.

Thus a sequence of instants is generated which simulates

the sequence transmitted by the physical counter. Each instant /28

is characterized by its own time tj (j = l,...,n). In the study

of the simplest fluxes, we used n = 1000. The trial fluxes were

modeled for the following variants of the densities Xi:

Vafi-

I 0.267 0.200 0.500 0.133

II 0.800 0.600 1.500 0.400
m 2.400 1.800 4.500 1.200

N (N = 50) realizations of the fluxes were calculated for

each variant. From these, the same base intervals were selected

for each variant: a) from t = 0 to t = 4mot0 = 4 min (mo = 5,

to = 12 sec); b) from t = 4 min to t = 8 min; and c) from t =

= 4 min to t = 20 min. Variant b)is the basic variant. Variant

a) was used to illustrate the effect of the transient regime and

variant c) to illustrate the effect of the length of the base.
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Cv) Cv) C.) Cv)The values l- 1 2 3 , . (v.denotes the number of

the realization) and the first and second sample'moments

N v (6.4)

(6.5)

were calculated for a particular estimation method and the

selected variants.

In addition the second sample moments about the true values

Xi were calculated

(6.6)

The following principle was used to reduce the total number

of variants. First, the methods were compared on the basis of

variant II. Next, some variants were calculated, using particular /29

methods to illustrate the theoretical results discussed above,

and to clarify relations not amenable to a theoretical study.

The results of the calculations are presented in Tables 4-7.

The following conclusions can be drawn on the basis of the tables:

1. The sample correlation coefficients are negligibly small

(Table 7). Therefore, the remaining tables give only the

variances.

2. Table 6 shows the effect of the transient regime. For

variant Ia, for Xi the error in Ti is 30%; however, for IIb, the

error already decreases considerably. Moreover, for Ia, for

i = 4 the error is already negligible.

3. Table 5 shows that for 3 (z =.Xt o = 54), the accuracy of

the first approximation using the first method is roughly
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TABLE 4. VALUES OF Ti,' ii AND Pii FOR VARIANT IIb

Method Param-I1
eMethod ter

I 2 3 4
Initial 0o.8 0.6 1.5 0.4
value
F i rs t . ...
-method, Xi 0. 930 0.575 1.700 0.072
first
first- . 0.29243 0.42213 0.05732 0. 60CO

matlon 0,30932 0 42278 0.09750 0.I6792
First -
method, i 0.885 0.434 1.788 0.106
Seapproxi-nd 021736 0.15448 0.08079 0.04041

imalon ~~i 0. 22460 0.18209 0.1 6345 0.12697
Second
method, , 0.779 0.645 I.507 0.408
first
approxi- 0.02657 0.01946 0.05351 0.0337
mation Fi 0.02702 0. 02151 0.05356 0.03378

SSecond 0.776 0.631 1I.519 0.400

approxi- fA 0.01940 0.01158 0.03858 0.02611
mation RM 0.01995 0.01256 0.03894 0,02620

'RDethod
Method 0.734 0, 559 1.395 0.350of least
squares 0,01810 0.00774 0.02617 0.01657

a 0.02243 0.00940 0.03719 0.01S02
More ac- 1 0.928 0.550 1.587 0.345

least
S A 0.02703 0.03296 o,03984 0.05354

Second . 0.04341 0.03544 0.04743 0.05655
approxi-
mation

comparable to the accuracy of the first approximation using the

second method, which confirms the theoretical results. The

second method becomes more efficient for smaller X. However, when

the second approximation is taken into account (this case was

not studied theoretically), the applicability of the first method

can be extended to smaller values of X. Thus, for example, for

A = 1,2, in the first approximation, the variances for both
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TABLE 5, VALUES OF Xi, 1i.j AND ii FOR VARIANT IIIb

[-Method ieter 2 3

value

First -
method, A 2.488 1.939 4.630 1.445
first
approxi- ha 0.07212 0.06927 0.0629I 0.06223
maion ~i 0.07994 0.08868 0.08213 0.02208

First
,method, a 2.362 1.780 4.507 1.246
second a 0.04847 0.04491 0.05395 0.02171
approxi-
mation ';M 0.04990 0.04531 0.05400 0.02383

Second
mthod, X; 2.389 1.768 - 4.53I 1.176 -
.first
'approxima t 0.05535 0.05249 0.06648 0.03391
tlon . 0.05547 0.05351 0.06742 0.03449

methond,... 2.375 1.769 4.530 I.I96

second 0.04680 0.0446i 0,05573 0.02302
maroxmaion . 0.04744 0.04578 0.05664 0.02304

Method of 2.120 1.603 4.033 1.063
least
squares 0.03503 C,03018 0.06844 0.02541

M 0.07490 0.05866 0.30612 0.03987
Most accu .
rate least ' 2.342 I735 4.518 I.I27

'squares 0.05175 0.04988 0.05696 0.02186
method,
second Pl 0.05514 0.05404 0,057k. 0.0712

approxi-
mation

methods differ considerably, but are nearly equal in the second

approXimation.

For still smaller X (Table 4), the second method becomes

more efficient in every respect -- even in the second( approximation.

4. The method of least squares gives a biased estimate.

For small X, the improved least squares method in the second

approximation is much worse than the second method in the second
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TABLE 6. ,VALUES OF Xi, ii, ii FOR VARIANTS la, Ib, Ic

(SECOND METHOD, FIRST AND SECOND APPROXIMATION)

aa- ar -
i- Method eter

ant I: 0,270 2; 0.20013; 0.500 4: 0.13
First 0,184 0.173 0.523 10.13approxi-
mation Ai 0.01343 0-01440 0.02122 0.01244

LM a__ __ 0.02083 0.01511 0.02173 0.01244
Second
approxi- ~ 0.201 0 I88 0.542 0.137
mation - 0,01447 0.01614 0.01989 0.01362

ma 0.01924 0.01628 0.02166 0.01367

First - 0.275 0.200 '0.530 0.133
approxi-
mation i 0.02518 0.02148 0.02130 0.01991

K ',02520 0.02151 0.02280 0.01992

Second
pproxi- 0.278 0.195 0.543 0.137approxi-

!mation . 4l 0.02454 0.02230 0.0"'06 10.02006

"ii 0.02460 0.02232 0.02195 0.020II

First
approxi- 0.269 0.190 0, 503 0, 32
approxi-
mation t4 0.00413 0.00360 0.00437 0.00217

I) - - 0.00413 0,00370 0,00438 0.00218

Second I 0.270 0.191 0.504 '0-I53
approxi- -

mation t- 0.00400 0.00343 0.00422 0.00210

i f 0.00400 0.00351 0.00423 0.002I

approximation. For larger X, these methods are practically

comparable.

5. Taking into consideration the entire discussion and also /30

the simplicity of the program, the second method in the second

approximation is recommended for practical use.

30



TABLE 7. VALUES OF 1ij FOR VARIANTS Ia, IIP, IIIc

(SECOND METHOD, SECOND APPROXIMATION)

Variant 2 3 1 4

I 0 01924 -0,28 -0.21 -0.3I

2 -0.00500 0.01628 -.30 . 0
I a) 3 -0,00431 -0.00563 0.02166 -0.33

4 -0.00502 0.0C135- --0.00573 0.01367

I 0.01995 -0,24 -0.16 -0,,q7

2 -0,00375 0,01256 -0,21 +011I
I , 3 -0.00438 -0.00468 0.03894 0.23

4 -0.00843 0,00204 -0.00736 0.C2620

0,00969 -X.II 0.22 - -0.05
2 -0.00IC1 0,00868 0.14 U

i1 c) 3 0-00238 0.00149 0.01206 -O.T5
4 -0.0C036 0.00005 -0.00112 0.00447

Note: The corresponding sample correlation coefficients

are given above the diagonal.
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